
JAVA

Introduction

 Java is high-level, object-oriented programming language

developed by Sun microsystem in 1991.

 Earlier name was oak given by James Gosling(father of java).

 Java use for making desktop application, web application,

enterprise application, mobile app, embed system, robotics, games

etc.

Java Platforms / Editions
There are 4 platforms or editions of Java:

1) Java SE (Java Standard Edition)

It is a Java programming platform. It includes Java programming APIs such as java.lang, java.io, java.net,
java.util, java.sql, java.math etc. It includes core topics like OOPs, String, Regex, Exception, Inner classes,
Multithreading, I/O Stream, Networking, AWT, Swing, Reflection, Collection, etc.

2) Java EE (Java Enterprise Edition)

It is an enterprise platform that is mainly used to develop web and enterprise applications. It is built on top
of the Java SE platform. It includes topics like Servlet, JSP, Web Services, EJB, JPA, etc.

3) Java ME (Java Micro Edition)

It is a micro platform that is dedicated to mobile applications.

4) JavaFX

It is used to develop rich internet applications. It uses a lightweight user interface API.

Java Buzzwords

 Simple: similar to C and C++ also pointers, operator overloading are

removed

 Object Oriented: can make software based on objects that support
encapsulation, inheritance, polymorphism.

 Robust: has type checking, exception handling, lack of pointers makes

java robust.

 Secure: absence of pointers make memory allocation difficult, access

restrictions (public, private) etc.

 Portable: can carry bytecode to any platform and execute it.

 Compiled and interpreted: first java program compiled in bytecode

then again interpreted by java interpreter which converts it into

machine language.

Java Architecture

Java simple program

 Sample code

Explanation

1. Public is access modifier which tells our class firstProgram is visible to

every other class

2. firstProgram is a class name.

3. Main() is our method with type void and string arguments .

4. Java main() method is always static, so that compiler can call it

without the creation of an object or before the creation of an
object of the class.

Arrays
 Java array is an object which contains elements of a similar data

type.

 The elements of an array are stored in a contiguous memory

location.

 Array has indexes from 0 to SIZE-1.

 There are two types of array:

1. Single-dimensional array

2. Multi dimensional array

Single-dimensional Array
 One-dimensional array in Java programming is an array with a bunch of values having been

declared with a single index.
import java.util.Scanner;

public class arraycode {
public static void main(String args[]) {

System.out.println("[+++++++++++++++method 1++++++++++++++++++]");
int myarr[] = {1, 2, 3, 4, 5};
System.out.println(myarr[2]);

System.out.println("[+++++++++++++++method 2++++++++++++++++++]");
int myarr2[] = new int[5];
myarr2[0] = 1;
myarr2[1] = 2;
myarr2[2] = 3;
myarr2[3] = 4;
myarr2[4] = 5;
System.out.println(myarr[2]);

System.out.println("[+++++++++++++++method 3++++++++++++++++++]");
int myarr3[] = new int[5];
System.out.println("Enter the array elements");
Scanner sc = new Scanner(System.in);
for (int i = 0; i < 5; i++) {

myarr3[i] = sc.nextInt();
}
System.out.println("the array elements are");
for (int i = 0; i < 5; i++) {

System.out.println(myarr3[i]);
}

}
}

Multi-dimensional Array
 One-dimensional array in Java programming is an array with a bunch of values having been

declared with a multiple index.
import java.util.Scanner;

public class arraycode {
public static void main(String args[]) {

System.out.println("[+++++++++++++++method 1++++++++++++++++++]");
int myarr[] = {1, 2, 3, 4, 5};
System.out.println(myarr[2]);

System.out.println("[+++++++++++++++method 2++++++++++++++++++]");
int myarr2[] = new int[5];
myarr2[0] = 1;
myarr2[1] = 2;
myarr2[2] = 3;
myarr2[3] = 4;
myarr2[4] = 5;
System.out.println(myarr[2]);

System.out.println("[+++++++++++++++method 3++++++++++++++++++]");
int myarr3[] = new int[5];
System.out.println("Enter the array elements");
Scanner sc = new Scanner(System.in);
for (int i = 0; i < 5; i++) {

myarr3[i] = sc.nextInt();
}
System.out.println("the array elements are");
for (int i = 0; i < 5; i++) {

System.out.println(myarr3[i]);
}

}
}

Inheritance
 Inheritance is one of the core concepts of Object-Oriented

Programming.

 It allows a class to use the properties and methods of another class.

 The purpose of inheritance in java, is to provide the reusability of

code so that a class has to write only the unique features and rest of

the common properties and functionalities can be inherited from

the another class.

Understanding inheritance

 Square, Circle, Triangle and Amoeba inherits from Shape class

The subclass can override Super class method

Example 2
 Some class just inherit from superclass and some class can override

the methods.

 Instance variable are not

overridden because they not need

to, any subclass can give it’s value .

Example 3

Animal Simulation
 Inheritance designing for animal

Animal Simulation 2

Animal Simulation 3

 Overriding makeNoise() and eat() methods because all animal

have different property

Animal Simulation 3

Further dividing lion, tiger and cat in one feline group and wolf, dog in canine

Which methods are called?
 JVM takes cares which method to execute on run time.

 The lowest specific one executed first and reverse one step

backward.

Using Is-A and Has-A
 Consider this,

 is Cat an Animal ? Yes-> Cat is subclass and Animal is superclass

-> or we can say Cat extends Animal

 is Animal a Cat ? No

 is room a house ? No

 is house a room ? No

 House has-a room? Yes -> so house is a member variable of class

Room

 Conclusion: is-a is use to test superclass and subclass relationship

whereas has-a Is use to check members variable.

If subclass wants both superclass

and its method code to override

There are 4 access-control

 Private

 Default

 Protected

 Public

 For now we deal with private and public only

 Private makes outside none can use it and public means anyone can

use it.

Advantages of inheritance

 Avoiding duplicate code

 Defining a common protocol for a group of classes.

Abstract class and methods

 Abstract class prevents the class from being instantiated.

 When creating object of class doesn’t make sense, we can make

that class abstract.

 Eg. Consider a class Animal and we creating an object of that class

animal, which doesn’t make any sense because we don’t know

what kind of animal is that.

 So we make that class animal abstract , compiler prevents from

animal class being instantiated.

 So we must create subclass that extends this class to create the
object and use.

Abstract class and methods

Abstract class and methods

 Abstract method means method must be overridden.

 It contains declaration only, no implementation.

Public abstract findArea();

 If class contains abstract method, class must be abstract too.

 Keeping abstract method doesn’t make sense but use to make

protocol for subclass.

 Abstract method must be implement in subclass

 It’s a way to prevent a closs from every being instaniated.

 Compiler stop the code on creating new.

interface

 An interface in Java is a blueprint of a class.

 It has static constants and abstract methods.

 It is a reference type similar to class but contains only constants and
methods declaration.

Interface coding

interface Animal {
void playNoise();

void knowFood();
}

interface AnimalLocation{
void getLocation();

}

class Dog implements Animal, AnimalLocation {
private String name;
private String loc;
Dog() {
}
Dog(String name, String l) {

this.name = name;
this.loc = l;

}
public void playNoise() {

System.out.println("bark bhau bhau");
}
public void knowFood() {

System.out.println("meat\t\trice\t\tbread");
}
public void getName() {

System.out.println("name is : " + name);
}
public void getLocation(){

if (this.loc=="jungle")
System.out.println("animal found in jungle");

else
System.out.println("animal found in home");

}
}

class interfaceDemo {
public static void main(String args[]) {

Dog d1 = new Dog("jacky", "home");
d1.playNoise();
d1.knowFood();
d1.getName();
Dog d2 = new Dog();
d2.getName();
d1.getLocation();

}
}

Multiple inheritance
//implementing muliple inheritance
interface Father {

void knowJob();

void knowName();
}
interface Mother extends Father{

void knowJobM();
}

class College{
void getCollege(){

System.out.println("coolege method");
}

}
class Child extends College implements Mother{

public void knowJob(){
System.out.println("know job");

}
public void knowJobM(){

System.out.println("know job mother");
}
public void knowName(){

System.out.println("know father name");
}

}

public class multipleInheri {
public static void main(String args[]){

Child c1 = new Child();
c1.knowJob();
c1.knowJobM();
c1.knowName();
c1.getCollege();

}
}

Packages

 Every class in the java belongs to the packages

 Eg: ArrayList is in package called java.util,

System(System.out.println), String, Math (Math.random()) all this

belongs to java.lang package.

Importance of package

1. It help to organize a project or library, rather than having

horrendously large pile of classes, they are grouped into packages.

2. It gives name scoping, to help prevent collisions if different

programmers trying to give same name to the class they have to

tell the JVM which class they are using.

3. It provide a level of security so that the class in the package can

only access the code.

How to use package?

1. IMPORT

Put the import statement at the top of the code.

Import java.util.ArrayList;

2. TYPE

type the full name in the code anywhere you use it.

java.util.ArrayList<Dog> list = new java.util.ArrayList<Dog>();

Package Demo
implementation with and without package

Keep class in package

 Select package name in reverse hite.digital

 Create folder classes in root folder. i.e classes and src in same folder

 Put source code .java in src/hite.digital folder/package

 Write package hite.digital; at 1st line in every .java file.

 Cd src

 Javac –d ../classes hite/digita/shape.java

 Or

 javac -d ../classes hite/digital/*.java

 Cd ..

 Cd classes

 Java hite.digital.shape

 Other class can import it and use the code

EXCEPTION HANDLING

 there might be problem in the run time, so programmers must

handle the risky method.

 Example file not found, server down, divide by zero etc.

Learning exception handling with

making music machine

Features include music app

 It include GUI Swing,

 How to connect another machine

 How to use i/o for sending message to another machine

Javasound API

 JavaSound is a collection of classes and interfaces.

 JavaSound is split into 2 parts MIDI and sampled.

 MIDI stands for Musical Instrument Digital Interface.

 MIDI is like a sheet of music, it doesn’t include sound, it contains

instructions only.

 MIDI file is like HTML document and device that renders it is like web

browser.

 Instrument may be built by software like digital keyboard.

 We use Synthesizer software that creates sound.

Need Sequencer

 We need a sequencer object

 Its an object that takes all the midi data and sends it to the right

instruments.

 try,/catch use to handle the exception.

 Use try/catch to handle the exception code.

 Put risky code try block and catch the code if exception occur.

Try/catch

 Write risky code in try block and when that code throws exception it

should put in catch block.

Multiple catch block
 Method might throw multiple exception so we should use multiple

catch block.

Try/catch/Finally block

 We can use final block to write code that must run no matter try or

catch execute.

 Even if there is return in try/catch, finally code is execute.

Throws and throw
 Exception can be 2 types:

 Checked and unchecked:

 Checked are check at compile time like IOException,

InterruptException

And unchecked are ignore at compile time but check at runtime like

ArithmeticException, ArrayOutOfIndex.

 Throws and throw is use to use to handle check exception.

Throws keyword
 It is use in method declaration

To declare type of exception.

Throw keyword
 is used to explicitly throw a

single exception

	Slide 1: JAVA
	Slide 2: Introduction
	Slide 3: Java Platforms / Editions
	Slide 4: Java Buzzwords
	Slide 5: Java Architecture
	Slide 6: Java simple program
	Slide 7: Arrays
	Slide 8: Single-dimensional Array
	Slide 9: Multi-dimensional Array
	Slide 10: Inheritance
	Slide 11: Understanding inheritance
	Slide 12: The subclass can override Super class method
	Slide 13: Example 2
	Slide 14: Example 3
	Slide 15: Animal Simulation
	Slide 16: Animal Simulation 2
	Slide 17: Animal Simulation 3
	Slide 18: Animal Simulation 3 Further dividing lion, tiger and cat in one feline group and wolf, dog in canine
	Slide 19: Which methods are called?
	Slide 20: Using Is-A and Has-A
	Slide 21: If subclass wants both superclass and its method code to override
	Slide 22: There are 4 access-control
	Slide 23
	Slide 24: Advantages of inheritance
	Slide 25: Abstract class and methods
	Slide 26: Abstract class and methods
	Slide 27: Abstract class and methods
	Slide 28
	Slide 29: interface
	Slide 30: Interface coding
	Slide 31
	Slide 32: Multiple inheritance
	Slide 33: Packages
	Slide 34: Importance of package
	Slide 35: How to use package?
	Slide 36: Package Demo implementation with and without package
	Slide 37: Keep class in package
	Slide 38
	Slide 39: EXCEPTION HANDLING
	Slide 40: Learning exception handling with making music machine
	Slide 41: Features include music app
	Slide 42: Javasound API
	Slide 43: Need Sequencer
	Slide 44
	Slide 45
	Slide 46: Try/catch
	Slide 47: Multiple catch block
	Slide 48: Try/catch/Finally block
	Slide 49: Throws and throw
	Slide 50: Throws keyword
	Slide 51: Throw keyword
	Slide 52

